22 research outputs found

    A framework for the firstā€‘person internal sensation of visual perception in mammals and a comparable circuitry for olfactory perception in Drosophila

    Get PDF
    Perception is a first-person internal sensation induced within the nervous system at the time of arrival of sensory stimuli from objects in the environment. Lack of access to the first-person properties has limited viewing perception as an emergent property and it is currently being studied using third-person observed findings from various levels. One feasible approach to understand its mechanism is to build a hypothesis for the specific conditions and required circuit features of the nodal points where the mechanistic operation of perception take place for one type of sensation in one species and to verify it for the presence of comparable circuit properties for perceiving a different sensation in a different species. The present work explains visual perception in mammalian nervous system from a first-person frame of reference and provides explanations for the homogeneity of perception of visual stimuli above flicker fusion frequency, the perception of objects at locations different from their actual position, the smooth pursuit and saccadic eye movements, the perception of object borders, and perception of pressure phosphenes. Using results from temporal resolution studies and the known details of visual cortical circuitry, explanations are provided for (a) the perception of rapidly changing visual stimuli, (b) how the perception of objects occurs in the correct orientation even though, according to the third-person view, activity from the visual stimulus reaches the cortices in an inverted manner and (c) the functional significance of well-conserved columnar organization of the visual cortex. A comparable circuitry detected in a different nervous system in a remote species-the olfactory circuitry of the fruit fly Drosophila melanogaster-provides an opportunity to explore circuit functions using genetic manipulations, which, along with high-resolution microscopic techniques and lipid membrane interaction studies, will be able to verify the structure-function details of the presented mechanism of perception

    UBE3A reinstatement as a disease-modifying therapy for Angelman syndrome

    Get PDF
    Half a century ago, Harry Angelman reported three patients with overlapping clinical features, now well known as Angelman syndrome. Angelman syndrome is caused by mutations affecting the maternally inherited UBE3A gene, which encodes an E3-ubiquitin ligase that is critical for typical postnatal brain development. Emerging evidence indicates that UBE3A plays a particularly important role in the nucleus. However, the critical substrates that are controlled by UBE3A remain elusive, which hinders the search for effective treatments. Moreover, given the multitude of signalling mechanisms that are derailed, it is unlikely that targeting a single pathway is going to be very effective. Therefore, expectations are very high for approaches that aim to restore UBE3A protein levels. A particular promising strategy is an antisense oligonucleotide approach, which activates the silenced paternal UBE3A gene. When successful, such treatments potentially offer a disease-modifying therapy for Angelman syndrome and several other neurodevelopmental disorders
    corecore